Abstract
ThermoCatalytic Decomposition of methane (TCD) offers an interesting route to convert natural gas into hydrogen and functional carbon. In this study the reaction kinetics of TCD is studied for a nickel supported catalyst using a special fluidized bed reactor. The effect of operating conditions such as temperature, concentrations of methane and hydrogen and space velocity (SV) was studied on a commercial nickel catalyst on a silica support. The performance of the catalyst was evaluated in terms of three parameters: maximum reaction rate, lifetime and carbon yield. Values up to and in excess of 70gC/gcat and 12h (at 550 °C and 70vol.% CH4-5vol.% H2) have been achieved for carbon yield and lifetime, respectively. The carbon product has fish bone structure. Our study has revealed that at lower temperatures and in the presence of small amounts of hydrogen (≤10%) a higher carbon yield is obtained. Lower concentration of methane (higher concentration of the inert) lowers the reaction rate, the lifetime and therefore the carbon yield. A dual kinetic approach has been adopted to determine maximum reaction rate and the associated deactivation factor. The kinetic parameters were estimated for the temperature range of 550-600 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.