Abstract
In the present study, poly(vinyl chloride)/titanium dioxide (PVC/TiO2) nanocomposite films containing different amounts of synthesized TiO2 nanoparticles and commercial rutile powder were irradiated for 5112 hr, under exposure of artificial ultraviolet and visible lights in three different intensities. The rate of degradation was determined by using weight loss data and was found to follow a pseudo-first order kinetic model. To determine the overall rate constant of degradation, k, a possible mechanism of the photodegradation was considered. The rate equation demonstrated k as a function of TiO2 concentration and irradiation intensity at each wavelength. The overall rate constant of PVC/TiO2 samples were calculated to be varied in the range of 6–16 × 10−7 hr−1, at all investigated conditions. The kinetic study represented that by adding synthesized TiO2 nanoparticles, even at low content, and with increasing their concentration, the photodegradation rate of nanocomposites decreased considerably compared with the composite samples. Likewise, by adding nanoparticles, a significant increase in the nanocomposites lifetime was achieved. The effect of irradiation intensity was investigated according to the reciprocity law experiments, and it was found that photodegradation occurred in two regimes with respect to irradiation intensity. The calculated overall rate constants were validated by the experimental data. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.