Abstract

This study describes the physico-geometrical mechanism and overall kinetics for the multistep thermal dehydration of barium titanyl oxalate tetrahydrate (BTO). The thermal dehydration kinetics of BTO was studied at four different linear heating rates under non-isothermal conditions. The reaction kinetics was performed using differential scanning calorimetry (DSC) and the curves obtained were analysed using different isoconversional model-free equations and the values are found to be compatible with each other. The kinetic deconvolution principle is used for identifying the partially overlapped kinetic processes of the thermal dehydration of BTO, and it occurs in two stages. The overall reaction kinetics parameters calculated via kinetic deconvolution of the sample indicate the multistep nature of the process and the kinetic analysis of the non-isothermal data of this reaction model shows that the reaction is best described by Sestak–Berggren (m, n) empirical kinetic model. The prepared sample was identified and characterized by means of FT-IR, XRD, SEM, and TEM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call