Abstract

A recent study of the mass transfer kinetics of (−)- or S-Tröger’s base (TB) between ethanol and microcrystalline cellulose triacetate (CTA) allows an analysis of the concentration dependence of the mass transfer rate coefficient ( k m). S-TB elutes before R-TB. The retention time of the both compounds decreases with increasing temperature. In this study, experimental data measured between 30 and 50°C were analyzed to provide information on the kinetics of several mass transfer processes which take place in the chromatographic column, i.e., axial and intraparticle dispersion, the fluid-to-particle mass transfer, and the kinetics of adsorption/desorption at the actual adsorption sites. Intraparticle diffusion has the dominant contribution to band broadening at high flow-rates. Both intraparticle diffusivity and the surface diffusion coefficient exhibit a small concentration dependence. The positive dependence of k m on the concentration of S-TB seems to result from the properties of the adsorption/desorption kinetics and can be interpreted by considering the phase equilibrium properties. A quantitative analysis of the activation energy of the mass transfer kinetics of S-TB in the CTA column was also attempted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.