Abstract
The mechanisms involved in the thermal reduction of graphite oxide (GO) are not yet clear. In the present study, the thermal reduction of GO, obtained by a Brodie-based method, is monitored by means of time- and temperature-resolved X-ray diffraction (XRD), thermogravimetric analysis (TGA), and TGA/mass spectrometry (MS) in dynamic (nonisothermal) and static (isothermal) modes. Two distinct mechanisms were well resolved by the fitting of isothermal TGA data to 2D diffusion and autocatalytic models, which provides new insights on the thermal behavior of GO. The combined TGA and XRD results in isothermal mode suggest that the 2D diffusion mechanism mainly occurs in the interlayer, whereas the autocatalytic mechanism occurs in the external surface. The latter overcomes the former when GO has lost about 10 wt %. The results are compared to previous studies on the thermal reduction of GO. The differences found could be attributed to the synthetic method used to obtain GO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.