Abstract
An experimental, temperature-dependent kinetic study of the gas-phase reaction of the hydroxyl radical with molecular bromine (reaction 1) has been performed by using a pulsed laser photolysis/pulsed-laser-induced fluorescence technique over a wide temperature range of 297-766 K, and at pressures between 6.68 and 40.29 kPa of helium. The experimental rate coefficients for reaction 1 demonstrate no correlation with pressure and exhibit a negative temperature dependence with a slight negative curvature in the Arrhenius plot. A nonlinear least-squares fit with two floating parameters of the temperature-dependent k(1)(T) data set using an equation of the form k(1)(T) = AT(n) yields the recommended expression k(1)(T) = (1.85 x 10(-9))T(-0.66) cm(3) molecule(-1) s(-1) for the temperature dependence of the reaction 1 rate coefficient. The potential energy surface (PES) of reaction 1 was investigated with use of quantum chemistry methods. The reaction proceeds through formation of a weakly bound OH...Br(2) complex and a PES saddle point with an energy below that of the reactants. Temperature dependence of the reaction rate coefficient was modeled by using the RRKM method on the basis of the calculated PES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.