Abstract

Using Auger electron spectroscopy we demonstrate the determination of the energy barrier for the formation of a surface-confined Cu 50Pt 50(111) bilayer alloy. Starting with one monolayer of Cu on Pt(111) concentration changes are determined as a function of annealing temperature up to 600 K and annealing time. Comparison of the experimental data with Monte Carlo simulations give the best result for the assumption of a Cu 50Pt 50 surface alloy yielding an energy barrier for interlayer mixing of 1.11±0.12 eV/atom. Concomitant valence band photoemission spectra also indicate the alloy formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.