Abstract

Methylmaleic (citraconic, CTA) acid and methylfumaric (measaconic, MSA) acid in aqueous sulfuric acid solution undergo bromine-catalyzed reversible cis-trans isomerization in the presence of ceric and bromide ions. The positional isomerization of CTA or MSA to itaconic acid (ITA) is not observed. The method of high performance liquid chromatography (HPLC) was applied to study the kinetics of this catalyzed isomerization. The major catalytic species is best expressed as the Br−2 · radical anion. Under suitable catalytic conditions, there is a tendency for the [MSA]/[CTA] ratio to reach an equilibrium value of 4.10 at 25° for the CTA+Br−2 · ⇄ MSA+Br−2 · reaction. Chloromaleic (CMA) and chlorofumaric (CFA) acids undergo similar isomerization with an equilibrium [CFA]/[CMA] ratio of 10.3 at 25°. The isomerization of maleic acid (MA) to fumaric acid (FA) is essentially irreversible with 50 as the lower limit of the equilibrium [FA]/[MA] ratio. The substituent has an important effect on the reversibility of this catalyzed isomerization of butenedicarboxylic acids. The thermodynamic parameters ΔH° and ΔS° at 25° for the CTA+Br−2 · ⇄ MSA+Br−2 · reaction were found to be −5.1±0.7 kj/mol and −6.0±3.3 J/mol K, respectively. The present method gives a plausible way to measure the differences in enthalpy and entropy between the trans- and cis-isomers of butenedicarboxylic acids (CRCO2H=CR'CO2H) in aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.