Abstract

A kinetic study of the reaction between an aroxyl radical (ArO•) and fatty acid esters (LHs 1-5, ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) has been undertaken. The second-order rate constants (ks) for the reaction of ArO• with LHs 1-5 in toluene at 25.0 °C have been determined spectrophotometrically. The ks values obtained increased in the order of LH 1 < 2 < 3 < 4 < 5, that is, with increasing the number of double bonds included in LHs 1-5. The ks value for LH 5 was 2.93 × 10-3 M-1 s-1. From the result, it has been clarified that the reaction of ArO• with LHs 1-5 was explained by an allylic hydrogen abstraction reaction. A similar kinetic study was performed for the reaction of ArO• with six carotenoids (Car-Hs 1-6, astaxanthin 1, β-carotene 2, lycopene 3, capsanthin 4, zeaxanthin 5, and lutein 6). The ks values obtained increased in the order of Car-H 1 < 2 < 3 < 4 < 5 < 6. The ks value for Car-H 6 was 8.4 × 10-4 M-1 s-1. The ks values obtained for Car-Hs 1-6 are in the same order as that of the values for LHs 1-5. The results of detailed analyses of the ks values for the above reaction indicated that the reaction was also explained by an allylic hydrogen abstraction reaction. Furthermore, the structure-activity relationship for the reaction was discussed by taking the result of density functional theory calculation reported by Martinez and Barbosa into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.