Abstract
The scope of this work was to evaluate the photocatalytic degradation of salicylic acid (SA) using the anatase TiO2 thin film (hereafter: ATF) under UV-A irradiation and to explore the tentative long-term activity of ATF. The ATF was immobilized by the sol–gel procedure on the inner side of outer wall of annular glass reactor for maximized exposure area to applied irradiation. The ATF was used for 41 consecutive photocatalytic runs (trun = 60 min) and then irradiated under natural sunlight over a period of 15 days. Photocatalytic runs were repeated with irradiated catalyst, showing the unchanged photocatalytic activity with observed reaction rate constant k SA,obs = 4.0 × 10−7 min−1 W−0.5 m1.5. The degradation and mineralization kinetics of SA and the degradation by-products were studied. A tentative reaction scheme was presented. 2,5-Dihydroxybenzoic acid (2,5-DHBA) and 2,3-dihydroxybenzoic acid (2,3-DHBA) were identified as the main degradation by-products. The incident photon flux was determined along the inner reactor wall, i.e. on the thin film surface (I tf, W m−2) using two radiation emission models. To obtain kinetic parameters independently of photocatalyst optical properties and irradiation conditions, its lump value was introduced to kinetic model. A detailed kinetic study revealed first-order kinetics for SA, 2,5-DHBA, 2,3-DHBA and residual organics degradation and confirmed the preferred degradation pathway via ·OH radical attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.