Abstract

The kinetics of ruthenium(VI) catalyzed oxidation of 2-methoxyethanol by hexacyanoferrate(III) ion in an aqueous alkaline medium at constant ionic strength shows zero order dependence on hexacyanoferrate(III) and first order dependence on Ru(VI). Dependence of substrate concentration shows a Michaelis – Menten type behaviour. The rate increases with the decrease in alkali concentration. A reaction mechanism involves the formation of an intermediate complex between the substrate and ruthenium(VI). This complex decomposes slowly, producing ruthenium(IV), which is reoxidized by hexacyanoferrate(III) in subsequent steps. The theoretical rate law obtained is in complete agreement with the experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.