Abstract
AbstractFree radical solution copolymerization of acrylonitrile (AN) and itaconic acid (IA) was performed with DMSO‐d6 as the solvent and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. Weight ratio of the monomers to solvent and molar ratio of initiator to monomers were constant in all experiments. The initial comonomer composition was the only variable in this study. On‐line 1H NMR spectroscopy was applied to follow individual monomer conversion. Mole fraction of AN and IA in the reaction mixture (f) and in the copolymer chain (F) were measured with progress of the copolymerization reaction. Overall monomer conversion versus time and also compositions of monomer mixture and copolymer as a function of overall monomer conversion were calculated from the data of individual monomer conversion versus time. Total rate constant for the copolymerization reaction was calculated by using the overall monomer conversion versus time data and then kp/kt0.5 was estimated. The dependency of kp/kt0.5 on IA concentration was studied and it was found that this ratio decreases by increasing the mole fraction of IA in the initial feed. The variation of comonomer and copolymer compositions as a function of overall monomer conversion was calculated theoretically by the terminal model equations and compared with the experimental data. Instantaneous copolymer composition curve showed the formation of alternating copolymer chain during copolymerization reaction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3253–3260, 2007
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.