Abstract

A MoVTeNb multimetallic mixed oxide was studied for the oxidative dehydrogenation of ethane, a promising alternative for catalytic ethylene production. Lab-scale steady-state experimental reaction data were obtained according to a 3k experimental design to investigate the simultaneous effect of temperature (400–480 °C) and space–time [23–70 gcat h (mol of ethane)−1]. A fixed-bed reactor at atmospheric pressure was employed, feeding a mixture of ethane, oxygen, and nitrogen. Ethane conversion varied from 17 to 85%, whereas selectivity for ethylene and COx varied from 94 to 76% and from 4.0 to 24%, respectively. These types of analyses are useful for determining the optimum reaction conditions to enhance the catalytic performance of the mixed oxides presented herein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.