Abstract

Advanced oxidation processes (AOPs), such as hydroxyl radical (HO•)- and sulfate radical (SO4•-)-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO•- and SO4•--mediated oxidation. In the UV/H2O2 process, a simplified kinetic model involving only steady state concentrations of HO• and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO• in the removal of PPCPs. In the UV/K2S2O8 process, the calculated steady state concentrations of CO3•- and bromine radicals (Br•, Br2•- and BrCl•-) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO4•-, respectively. The kinetic model, involving both SO4•- and CO3•- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO4•- could lead to overestimations of the removal efficiencies of the SO4•--mediated oxidation of nitroimidazoles in wastewater effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.