Abstract

AbstractSummary: The number of active centers (CP) and propagation rate constants (kP) for polymerization of ethylene with supported catalysts LFeCl2/SiO2, LFeCl2/Al2O3 and LFeCl2/MgCl2 (L = 2,6‐(2,6‐(Me)2C6H3NCMe)2C5H3N), activated by an Al(i‐Bu)3 co‐catalyst, were determined by a method of polymerization inhibition with radioactive 14CO. In contrast to homogeneous systems based on LFeCl2, the supported catalysts are highly active and stable in ethylene polymerization at 70–80 °C. In the presence of hydrogen, the activity of the supported catalysts substantially increases (2–4 fold). The data obtained on the effect of hydrogen on the calculated CP and kP values suggests that for ethylene polymerization without hydrogen, the “dormant” active centers are formed in the catalytic systems. A scheme for the formation of these “dormant” centers and their reactivation in presence of hydrogen is suggested. For the investigated supported catalysts the CP values were found to be only 2 to 4% of the total iron complex content in the catalysts. The kP value for the catalysts prepared using different supports (SiO2, Al2O3 and MgCl2) were close (3.2 × 104 to 4.5 × 104 L · (mol · s)−1 at 70 °C). The support composition affects neither the molecular mass (MM) nor the molecular mass distribution (MMD) of the polymers produced. The obtained CP and kP values and data on the polymer MM and MMD lead to conclusion that the nature of the support has almost no effect on the structure of the active centers and the distribution of their reactivity.Effect of support on the MMD of PE produced over supported LFeCl2 catalysts.magnified imageEffect of support on the MMD of PE produced over supported LFeCl2 catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.