Abstract

The kinetics of the base-catalyzed reaction of methyl 4-hydroxybenzoate in aqueous-ethanol solvent medium was studied and analyzed via combined on-line transmission FTIR spectroscopy and Band-Target Entropy Minimization (BTEM) technique. This reaction is considered complex since it involves simultaneous hydrolysis and ethanolysis reactions of methyl 4-hydrozybenzoate (MP) to form ethyl 4-hydroxybenzoate (EP) as an intermediate and sodium 4-hydroxybenzoate as a final product. The pure component spectra of the reactive species involved in the reaction were reconstructed using BTEM technique. Their corresponding real concentrations were calculated and subsequently used for analyzing the kinetics of this triangular reaction system. The effects of temperature and solvent mixture compositions were studied. In general, the results show that the rates of both hydrolysis and ethanolysis reactions increase with temperature. Addition of ethanol to the solvent mixture also reduces the rates of the hydrolysis reactions. The effect of solvent mixture on the rate of ethanolysis reaction is more complex and influenced by at least two competing factors, namely the concentration of ethoxide ion in the solution and the stabilization effect on the reactant. The enthalpy and entropy activation parameters, ΔH‡ and ΔS‡, of both the hydrolysis and ethanolysis reactions were determined using the Eyring equation and the activation parameters confirm the associative nature in the elementary steps in these reactions. Finally, it is shown that the dominant synthetic pathway in this triangular system changes from direct hydrolysis of methyl 4-hydrozybenzoate to the indirect pathway via ethanolysis and then hydrolysis depending on the solvent mixture composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call