Abstract

This paper has been utilizing the simultaneous ThermoGravimetric analysis and Differential Scanning Calorimetry (TG–DSC) to investigate the thermal decomposition of magnesium-sodium nitrate pyrotechnic composition based HTPB resin. The thermal behaviors of different samples with various fuel-oxidizer ratio contents were determined. Decomposition kinetic was investigated by evaluating the influence of DSC heating rate (4, 7, 10, 13 oC/min) on the behavior of the illumination flares. The results as expected showed that the decomposition temperature of the illumination flares decreases with the increase in the DSC heating rate, while thermal decomposition of the sample followed the first-order law. Furthermore, Magnesium-sodium nitrate illumination flares with HTPB resin have been studied for luminous efficiency by varying fuel/oxidizer ratio. The kinetic and thermodynamic parameters of the illumination flares decomposition under ambient pressure were obtained from the resulted DSC data via non-isothermal methods proposed by ASTM E698 and Flynn-Wall-Ozawa. Also, the critical temperature of ignition temperature was estimated at about 455 oC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call