Abstract

Reaction kinetics of the liquefaction of Victorian brown coal in a process development unit (PDU) having three reactors in series have been studied at temperatures of 430–470°C, and pressures of 15–25 MPa. It is shown that the rate of hydrogen consumption can be expressed as a function of the concentrations of coal and catalyst, hydrogen partial pressure, reaction temperature and residence time, and is controlled by the rates of hydrogenation of polynuclear aromatic components, and the rates of formation and stabilization of radicals. The relative contribution of these reactions, at any temperature, determine the influence of the hydrogen partial pressure on the rate of the hydrogen consumption. The kinetics of the decomposition reactions of brown coal to preasphaltene, asphaltene and to oil also have been studied. The apparent activation energies determined are 25 kJ mol −1 for the brown coal to preasphaltene, 50 kJ mol −1 for preasphaltene to asphaltene, 76 kJ mol −1 for asphaltene to oil, and 184 kJ mole −1 for oil to gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.