Abstract
The kinetics of thermal decomposition of sodium oxalate (Na2C2O4) has been studied as a function of concentration of dopant, aluminium, at five different temperatures in the range 783–803K under isothermal conditions by thermogravimetry (TG). The TG data were subjected to both model fitting and model free kinetic methods of analysis. The model fitting analysis of the TG data shows that no single kinetic model describes the whole α versus t curve with a single rate constant throughout the decomposition reaction. Separate kinetic analysis shows that Prout–Tompkins model best describes the acceleratory stage of the decomposition while the decay region is best fitted with the contracting cylinder model. Activation energy values were evaluated by model fitting and model free kinetic methods for both stages of decomposition. As proposed earlier the results favours a diffusion controlled mechanism for the isothermal decomposition of sodium oxalate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.