Abstract

Selenosubtilisin, a semisynthetic selenoenzyme produced by chemical modification of the serine protease subtilisin, acts as a mimic of glutathione peroxidase, catalyzing the reduction of tert-butyl hydroperoxide by 3-carboxy-4-nitrobenzenethiol. To clarify the mechanism of action of this catalyst, detailed kinetic studies have been carried out. Thiol-mediated reduction converts the seleninic acid form of selenosubtilisin (ESeO2H) into a selenenyl sulfide (ESeSAr). Investigations into the reduction of ESeO2H by the aromatic thiol revealed saturation kinetics and were consistent with a significant lowering of the pKa of the seleninic acid in the enzyme active site. While the reduction of ESeO2H was slow compared with a simple model system, the reduced selenoenzyme (ESeSAr) exhibited a much greater peroxidase activity than model compounds. The enzymic selenocysteine residue was shown to be crucial for this activity, and ping-pong kinetics were observed. A catalytic cycle involving interconversion of the ESeSAr, ESeH, and ESeOH forms of the enzyme has been proposed that is consistent with all the available data. The pH-rate profile for the peroxidase activity indicates the involvement of the active site histidine (His64) in the rate-determining step, which these investigations suggest is attack of ArS- on ESeSAr. The results presented here correlated well with crystallographic and spectroscopic data and provide more detailed information about crucial interactions within the active site of selenosubtilisin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.