Abstract
To go through the first stage of industrial solvent extraction process in order to recover uranium from phosphate rocks by liquid membrane techniques, as a simple model, the kinetics of facilitated transport of uranium(VI) from a dilute phosphoric acid medium into more concentrated phosphoric acid media as a receiving phase through a bulk liquid membrane containing di-2-ethylhexyl phosphoric acid as a carrier was studied. The influence of phosphoric acid concentration in the source and receiving phases, carrier concentration, type of solvent, stirring speed and temperature were investigated. The kinetic parameters (ke, ks, tmax, Jmax) were calculated for the interface reactions assuming two consecutive, irreversible first-order reactions. The activation energy values were calculated as 29.40 and 19.51 kJ mol−1 for extraction and stripping, respectively. The values of calculated activation energy indicated that both the extraction and stripping processes were controlled by mixed regime (both kinetic and diffusion). In addition, the influence of adding trioctyl-phosphine oxide into the membrane phase as a synergic agent on the transport kinetics was determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.