Abstract

The dehydration of trans-[Co(NH3)4Cl2)IO3·2H2O was studied isothermally by t.g.a. In the 0.1 < α < 0.8 range, where α is the fraction of the reaction complete, most of the runs gave the best fit to a second order rate law. Early stages of the reaction appear to follow a rate law based on reaction order while later stages (0.3 < α < 0.5) appear to be controlled by diffusion of H2O. The reaction in the 0.1 < α < 0.3 range gave a best fit to a third order rate law, while the 0.3 < α < 0.5 range gave the best fit to a three dimensional control rate law. The activation energy for the overall reaction was ca. 103 kJ mol−1. For α < 0.3 the activation energy was ca. 79.9 kJ mol−1, but for 0.3 < α < 0.5 it was ca. 110 kJ mol−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.