Abstract

Rat liver microsomal glutathione transferase is activated by sulfhydryl reagents and proteolysis. This property varies, however, depending on the combination, concentration and reactivity of the substrates. Thus, a multi-dimensional diagram can be envisioned in which the parameters affecting enzyme activity and activation are visualized. In principle activation could stem from an alteration in enzyme mechanism, transition-state complementarity, product release rate or pH-rate behaviour. These studies appear to rule out these possibilities and an alternate hypothesis is suggested based on the following experiments: (i) alternate substrate diagnosis of the kinetic mechanism of microsomal glutathione transferase indicates a random sequential mechanism. Non-activated and activated enzyme follow the same mechanism by these criteria. (ii) The microsomal glutathione transferase stabilizes a Meisenheimer complex between 1,3,5-dinitrobenzene and glutathione. The formation constants were similar for the unactivated and activated enzyme ((15 ± 1) · 10 3 and (14 ± 1)· 10 3 M −, respectively, at pH 8). Inasmuch as the Meisenheimer complex resembles the transition state there is no evidence for an increased stabilization upon activation. (iii) The catalytic rate constant k cat, does not vary with the viscosity in the assay medium. Thus, product release is not rate limiting for the unactivated and activated microsomal glutathione transferase (with saturating 1-chloro-2,4-dinitrobenzene and varying GSH). (iv) The pH dependence of the K f-values for Meisenheimer complex formation exhibited pK a values close to 6 for both the activated and unactivated microsomal glutathione transferase. The pH profile of k cat (with saturating 1-chloro-2,4-dinitrobenzene and variable GSH concentrations) showed apparent pK a values of 5.7 ± 0.5 and 6.3 ± 0.4 for the unactivated and activated enzyme, respectively, indicative of a very similar requirement for deprotonation of the enzyme-GSH-1-chloro-2,4-dinitrobenzene complex. (v) Examination of the kinetic parameters (obtained with GSH as the variable substrate against increasingly reactive electrophilic substrates) in Hammett plots shows that the activation mechanism entails a more efficient utilization of GSH. It is suggested that a higher rate of formation of the glutathione thiolate anion occurs in the activated enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.