Abstract

We have followed the dynamic evolution of intracellular pH and of the intracellular concentration of nucleotides (NDP, NTP), Pi and lactate in maize root tips during the course of normoxia and anoxia transition. The intracellular pH, determined from the 31P-NMR chemical shift of the cytoplasmic P1 peak, dropped from 7.5 to 6.9 during the first few minutes after anaerobiosis. It increased again, then settled to a steady-state value of 7.1-7.2, 25 min after the beginning of the anoxic treatment. Following oxygenation, the chemical shift of the cytoplasmic Pi peak drifted gradually to its initial value. The cytoplasmic pH followed an oscillatory time course which was almost identical to the time course of NTP. Intracellular lactate accumulated steadily during the first 30 min after anaerobiosis, then its intracellular concentration remained almost constant. Following oxygenation, the intracellular concentration of lactate decreased slowly. The cytoplasmic pH followed a time course which was not identical to the time course of lactate. Following hypoxia, the pH dropped to low values long before the intracellular lactate concentration reached a steady-state equilibrium. Conversely, subsequent to oxygenation, the pH returned to normal values long before lactate. These results do not agree with the statement that cytoplasmic acidification in hypoxic maize root tips is necessarily associated with lactic acid synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.