Abstract

Abstract With reduced dehydrogenation enthalpy change and reduced dehydrogenation temperature compared with its phenol-cyclohexanol pair, sodium phenoxide-cyclohexanolate pair developed recently is promising for large-scale energy storage and long-distance hydrogen transportation. In the present work, we investigate the kinetic behavior of the pair in the hydrogenation and dehydrogenation in water over three commercial catalysts. It is shown that 5% Ru/Al2O3 and 5% Pt/C perform well in the hydrogenation and dehydrogenation, respectively. Kinetic analyses show that the hydrogenation of sodium phenoxide is of first-order with respect to H2 pressure and zero-order to the concentration of sodium phenoxide in the presence of Ru/Al2O3 catalyst. >99% conversion of cyclohexanol and >99% selectivity to phenoxide can be achieved in the dehydrogenation catalyzed by Pt/C catalyst and in the presence of NaOH at 100 °C, where cyclohexanone was observed as an intermediate. According to the kinetic analysis, the hydrogenation of sodium phenoxide may undergo the hydrolysis and hydrogenation pathway. For the dehydrogenation, an intermediate, i.e., cyclohexanone, was detected and two possible pathways are proposed accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.