Abstract

AbstractSummary: The curing process of a commercial vinyl ester (VE) resin was characterized by calorimetric and spectroscopic techniques. A phenomenological kinetic model, experienced in previous studies, was employed to describe the proceeding of curing reactions. The model is able to describe the behavior of the processing variables, i.e. rate and degree of the reaction, during the curing of the resin under different conditions (heating rates). The effect of diffusion control phenomena on the reaction kinetics, associated with the evolution of the glass transition temperature as a function of the degree of polymerization and cross‐linking, was taken into account in the formulation of the kinetic model. A simpler model was proposed and verified for a liquid crystalline vinyl ester resin, synthesized by the authors. The model, in particular, did not take into account the effects of vitrification. The kinetic parameters were again evaluated by processing the calorimetric data. The kinetic study of the liquid crystalline monomer is performed after isotropization and therefore, the acceleration effect, associated with the cure in liquid crystalline phase is not taken into account for the kinetic analysis. Also in this case, the comparison between theoretical and experimental data was very satisfying.Experimental (full line) and predicted data (dotted line) of degree of reaction vs. time for the vinyl ester resin.magnified imageExperimental (full line) and predicted data (dotted line) of degree of reaction vs. time for the vinyl ester resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.