Abstract
The ammonium uranyl carbonate, (NH4)4UO2(CO3)3, is an important material used in UO2 and U3O8 ceramics production for the nuclear fuel fabrication. Thermal study and kinetic analysis of ammonium uranyl carbonate conversion under isothermal conditions has been studied in air atmosphere to obtain the tri-uranium octoxide (U3O8), using muffle furnace equipment, UV–visible spectrophotometer, gas adsorption, Hg porosimetry, laser granulometry, and optic spectroscopy. The textural properties (specific surface area, morphology, pore size, grain size, inter-particular porosity, and intra-particular porosity) and characteristics (uranium content and stoichiometry) of the prepared samples were estimated from the physical–chemical characterization. The kinetic parameters were estimated by a fitting of the experimental data. The activation energy Ea, frequency factor A, and reaction rate constants k were calculated from the conventional and iso-conversion kinetic models and were within the range of literature values. The activation energy average values are 36.69 and 30.36 kJ mol−1 by conventional and iso-conversion models, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.