Abstract

The formation of OH in the shock wave induced combustion of H2 and O2 has been measured by oscillographically recording the absorption of ultraviolet OH line radiation. The main features of the reaction course are: (1) an induction period whose length, ti, varies inversely with [O2], (2) an increase in the product [O2] ti as ti becomes short compared to the vibrational relaxation time of O2, and (3) at the end of the induction period, a sigmoid rise of [OH] to a maximum, followed by a slow decrease. ti has been studied over the ranges: 1100°≤T≤2600°K, 1.3×10—5≤[O2]≤8.0×10—4 mole/1, 0.25≤[H2]/[O2]≤5., 0.004≤[O2]/[Ar]≤0.20, and 5≤ti≤500 μsec. Agreement between incident and reflected shock experiments has been demonstrated. According to the branching chain mechanism known from explosion limit studies, ti is governed by the rate of H+O2→ lim k1OH+O according to: 2 k1[O2]ti=2.303 n, where n is the number of decades by which [OH] increases between initiation and the end of the induction period. The values of [O2]ti, which is nearly proportional to 1/k1, are summarized by: log10([O2]ti) (mole 1—1 sec)= —10.647+(3966±625)/T. The value k1=1.4×109 deduced at 1650°K from this work is combined with data near 800°K to give: k1=3×1011 exp(—17.5±3. kcal/RT) (mole/1)—1 sec.—1. The relation of these results to detonation experiments is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.