Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their derivates are mutagenic and carcinogenic substances widely distributed in the atmospheric environment. In this study, effective rate constants for heterogeneous reactions of NO(3) radicals with five 4-ring PAHs [benzo[a]anthracene (BaA), chrysene (Ch), pyrene (Py), 1-nitropyrene (1-NP), and 1-hydroxypyrene (1-OHP)] adsorbed on suspended azelaic acid particles are investigated by a mixed-phase relative rate method with gas-phase isoprene as the reference substance. The concentrations of suspended PAH particles and gas-phase isoprene are monitored concurrently by a real-time vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) and an online atmospheric gas analysis mass spectrometer, respectively. The obtained effective rate constants for the reactions of BaA, Ch, Py, 1-NP, and 1-OHP particles with NO(3) radicals are 4.3 × 10(-12), 4.0 × 10(-12), 6.4 × 10(-12), 1.3 × 10(-12), and 1.0 × 10(-11) cm(3)·molecule(-1)·s(-1), respectively, and their corresponding atmospheric lifetimes range from several minutes to half an hour at the NO(3) radical concentration of 5 × 10(8) molecules·cm(-3). In addition, the NO(3) uptake coefficients on particulate PAHs are estimated according to the consumption of PAHs under the exposure of NO(3) radicals. The experimental results of these heterogeneous reactions in the aerosol state provide supplementary knowledge for kinetic behaviors of airborne PAHs particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.