Abstract

Fusarium solani cutinase supported onto Chromosorb P was used to catalyze transesterification (alcoholysis) and hydrolysis on short volatile alcohols and esters in a continuous gas/solid bioreactor. In this system, a solid phase composed of a packed enzymatic preparation was continuously percolated with carrier gas which fed substrates and removed reaction products simultaneously. A kinetic study was performed under differential operating conditions in order to get initial reaction rates. The effect of the hydration state of the biocatalyst on the kinetics was studied for 3 conditions of hydration (a(w) = 0.2, a(w) = 0.4 and a(w) = 0.6), the alcoholysis of propionic acid methyl ester with n-propanol, and for 5 hydration levels (from a(w) = 0.2 to a(w) = 0.6) for the hydrolysis of propionic acid methyl, ethyl or propyl esters. F. solani cutinase was found to have an unusual kinetic behavior. A sigmoid relationship between the rate of transesterification and the activity of methyl propionate was observed, suggesting some form of cooperative activation of the enzyme by one of its substrate. For the hydrolysis of short volatile propionic acid alkyl esters, threshold effects on the reaction rate, highly depending on the water activity and the substrate polarity, are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.