Abstract

In an earlier study by us [47], thermo-responsive bioconjugate (poly-N-isopropylacrylamide-β-galactosidase) was synthesized and characterized. This study utilizes the prowess of such smart bioconjugate for the enzymatic synthesis of galacto-oligosaccharides (GOS) from lactose at various initial lactose concentrations (ILC), enzyme concentrations, and temperatures, while maintaining a constant pH of 6. A maximum GOS yield of 35% (on dry basis) was observed at 100g/L ILC and 0.275mg/mL (0.055U/mL) conjugated protein. The GOS yield remained approximately the same for 50 and 100g/L ILC, beyond which, it decreased. As the enzyme concentration increased, the equilibrium formation of GOS increased and eventually attained a plateau when the concentration of conjugated protein exceeded 0.275mg/mL (0.055U/mL). GOS yield increased on raising the temperature from 30 to 40°C, and declined thereafter. The apparent kinetic parameters were estimated from a five-step, nine-parameter kinetic model, which was then simulated using the COPASI package. The simulated results demonstrated an excellent match with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.