Abstract

The original theoretical model of polyelectrolyte adsorption onto water-dispersed colloid particles is extended to the system of polydisperse droplets of sunflower oil. Polycation (poly(allylamine hydrochloride)) and polyanion (poly(sodium 4-styrenesulfonate)) are taken in the theoretically projected concentrations to perform Layer-by-Layer assembly of a multilayer shell on the surface of oil droplets preliminary stabilized with a protein emulsifier (bovine serum albumin). The velocity of gravitational separation in suspension of encapsulated oil droplets is theoretically predicted and experimentally measured depending on the coating shell's thickness, aiming to clarify the mechanism to control over the separation process. Combining the theory and experimental data, the mass density of a polyelectrolyte multilayer shell assembled in a Layer-by-Layer fashion is obtained. Polyelectrolyte multilayer coated oil droplets are characterized by means of ζ-potential, and particle size measurements, and visualized by scanning electron microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.