Abstract

This study presents the results of kinetic speciation of nickel in undiluted mining and municipal effluents and effluents diluted with receiving freshwaters from the surrounding environment. The dilution ratios used for the dilution of the effluents were arbitrarily chosen, but were representative of the prevailing mining practices. The purpose of the this dilution was to mimic dilution with natural waters that result from dilution of the mining and municipal effluents with receiving freshwaters, so that this study would reveal environmental realities that are of concern to the managers and regulators of water resources. Ligand exchange kinetics using the competing ligand exchange method (CLEM) was studied using two independent techniques: graphite furnace atomic absorption spectrometry (GFAAS) with Chelex 100 resin as the competing ligand, and adsorptive cathodic stripping voltammetry (AdCSV) with dimethylglyoxime (DMG) as the competing ligand to determine the percentage of Ni metal released from Ni(II)-DOC complexes and the rate of dissociation of Ni(II)-DOC complexes. Using a sample containing a mixture of 30% Copper Cliff Mine effluent, 40% Sudbury municipal effluent and 30% Vermillion River water, both techniques gave results showing that the dilution of the effluent samples increased the percentage of nickel released from Ni(II)-DOC complexes. This increase in the release of nickel from the Ni(II)-DOC complexes may be of concern to managers and regulators of water resources. Agreement between the results of these two techniques has enhanced the validity of the competing ligand exchange method used by both techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.