Abstract
We present a new (1+ε)-spanner for sets of n points in ℝ d . Our spanner has size O(n/ε d−1) and maximum degree O(log d n). The main advantage of our spanner is that it can be maintained efficiently as the points move: Assuming that the trajectories of the points can be described by bounded-degree polynomials, the number of topological changes to the spanner is O(n 2/ε d−1), and using a supporting data structure of size O(nlog d n), we can handle events in time O(log d+1 n). Moreover, the spanner can be updated in time O(log n) if the flight plan of a point changes. This is the first kinetic spanner for points in ℝ d whose performance does not depend on the spread of the point set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.