Abstract

The paper explores the potentials of shape memory alloys (SMAs) for the design of autoreactive façade systems without using additional external energy. The exploration is conducted and assessed through the design of a façade concept for the city of Athens in Greece, aiming to improve both the indoor and outdoor environment by means of a kinetic autoreactive system featuring a dual-seasonal function, with a focus on the building’s direct and indirect impact on the urban heat island (UHI) effect. The paper covers a demonstration of the methodology followed, using a feedback-loop logic informed by environmental and energy performance evaluation studies in Grasshopper to optimize the geometry and movement of the shading component. During the façade design process, a comprehensive and systematic computational toolset is being developed, targeted on the abovementioned performance evaluation studies. Through the development and assessment of the façade concept, the objective is to explore the potentials and limitations for the application of autoreactive envelopes in the façade design. At the same time, the aim is to exploit the possibilities and optimization potentials offered through the developed iterative computational workflows, by showcasing the methodology and interoperability logic of the digital tools used for the data interchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call