Abstract

Two‐dimensional hybrid simulations with particle ions and fluid electrons are used to calculate the kinetic evolution of the Kelvin‐Helmholtz instability for a magnetopauselike configuration. The unidirectional magnetic field is essentially transverse to the plasma flow velocity, which is the most unstable case according to linear theory and models the flow dynamics in the subsolar region of the magnetopause for northward interplanetary magnetic field. We recover effects analogous to those found in MHD simulations, including a mode cascade to longer wavelengths. The boundary layer consists of coherent structure and is not well described by a diffusive process. Isolated structures on the order of the ion gyroradius are formed which can cross the boundary in either direction. We describe how the time evolution of these structures represents transport across boundary layers, and we consider the possible connection of these entities to flux transfer events and other structure seen in the low‐latitude boundary layer at the Earth's magnetopause as well as to flux ropes commonly observed near the ionopause of Venus. We also discuss the relation of the hybrid calculations to previous MHD simulations and to observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.