Abstract

The electron-cyclotron maser instability is widespread in the Universe, producing, e.g., radio emission of the magnetized planets and cool substellar objects. Diagnosing the parameters of astrophysical radio sources requires comprehensive nonlinear simulations of the radiation process. We simulate the electron-cyclotron maser instability in a very low-beta plasma. The model used takes into account the radiation escape from the source region and the particle flow through this region. We developed a kinetic code to simulate the time evolution of an electron distribution in a radio emission source. The model includes the terms describing the particle injection to and escape from the emission source region. The spatial escape of the emission from the source is taken into account by using a finite amplification time. The unstable electron distribution of the horseshoe type is considered. A number of simulations were performed for different parameter sets typical of the magnetospheres of planets and ultracool dwarfs. The generated emission (corresponding to the fundamental extraordinary mode) has a frequency close to the electron cyclotron frequency and propagates across the magnetic field. Shortly after the onset of a simulation, the electron distribution reaches a quasi-stationary state. If the emission source region is relatively small, the resulting electron distribution is similar to that of the injected electrons; the emission intensity is low. In larger sources, the electron distribution may become nearly flat due to the wave-particle interaction, while the conversion efficiency of the particle energy flux into waves reaches 10-20%. We found good agreement of our model with the in situ observations in the source regions of auroral radio emissions of the Earth and Saturn. The expected characteristics of the electron distributions in the magnetospheres of ultracool dwarfs were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.