Abstract

The kinetic and thermodynamic selectivities of imine formation have been investigated for several dynamic covalent libraries of aldehydes and amines. Two systems were examined, involving the reaction of different types of primary amino groups (aliphatic amines, alkoxy-amines, hydrazides and hydrazines) with two types of aldehydes, sulfobenzaldehyde and pyridoxal phosphate in aqueous solution at different pD (5.0, 8.5, 11.4) on one hand, 2-pyridinecarboxaldehyde and salicylaldehyde in organic solvents on the other hand. The reactions were performed separately for given amine/aldehyde pairs as well as in competitive conditions between an aldehyde and a mixture of amines. In the latter case, the time evolution of the dynamic covalent libraries generated was followed, taking into consideration the operation of both kinetic and thermodynamic selectivities. The results showed that, in aqueous solution, the imine of the aliphatic amine was not stable, but oxime and hydrazone formed well in a pH dependent way. On the other hand, in organic solvents, the kinetic product was the imine derived from an aliphatic amine and the thermodynamic products were oxime and hydrazone. The insights gained from these experiments provide a basis for the implementation of imine formation in selective derivatization of mono-amines in mixtures as well as of polyfunctional compounds presenting different types of amino groups. They may in principle be extended to other dynamic covalent chemistry systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.