Abstract
Autocatalytic reaction networks are instrumental for validating scenarios for the emergence of life on Earth and for synthesizing life de novo. Here, we demonstrate that dimeric thioesters of tripeptides with the general structure (Cys-Xxx-Gly-SEt)2 form strongly interconnected autocatalytic reaction networks that predominantly generate macrocyclic peptides up to 69 amino acids long. Some macrocycles of 6-12 amino acids were isolated from the product pool and were characterized by NMR spectroscopy and single-crystal X-ray analysis. We studied the autocatalytic formation of macrocycles in a flow reactor in the presence of acrylamide, whose conjugate addition to thiols served as a model "removal" reaction. These results indicate that even not template-assisted autocatalytic production combined with competing removal of molecular species in an open compartment could be a feasible route for selecting functional molecules during the pre-Darwinian stages of molecular evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.