Abstract

Lysozyme crystal growth rates over 5 orders of magnitude in range can be described using a layer-by-layer model where growth occurs by 2D nucleation on the crystal surface. Based upon the 2D nucleation model of layer growth, the effective barrier for growth was determined to be gamma = 1.3 plus or minus 0.3 x 10(exp -13) erg/molecule, corresponding to a barrier of 3.2 plus or minus 0.7 k(sub B)T, at 22 C. For solution supersaturation, In c/c(sub eq) greater than or equal to 1.9 plus or minus 0.2, the nucleation model would not predict or consistently estimate the highest observable crystal growth rates. As such, a kinetic roughening hypothesis where crystal growth occurs by a continuous mode was implemented for all growth rate data obtained above In c(sub r)/c(sub eq) greater than or equal to 2. That is, independent of the solution conditions that vary with either buffer pH, temperature or precipitant concentration, crystal growth occurs by the continuous addition of molecules anywhere on the crystal surface, above a roughening solution supersaturation. The energy barrier, E(sub c), for the continuous growth process is determined as 6.1 plus or minus 0.4 x 10(exp -13) erg/molecule or 15 plus or minus 1 k(sub B)T at 22 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.