Abstract

BACKGROUND: Application of urea may increase CO2 emission from soils due both to CO2 generation from urea hydrolysis and fertilizer-induced decomposition of soil organic carbon (SOC). The objective of this study was to investigate the effects of increasing urea application on CO2 emission from soil and mineralization kinetics of indigenous SOC. METHODS AND RESULTS: Emission of CO2 from a soil amended with four different rates (0, 175, 350, and 700 mg N/kg soil) of urea was investigated in a laboratory incubation experiment for 110 days. Cumulative CO2 emission (Ccum) was linearly increased with urea application rate due primarily to the contribution of urea-C through hydrolysis to total CO2 emission. First-order kinetics parameters (C0, mineralizable SOC pool size; k, mineralization rate) became greater with increasing urea application rate; C0 increased from 665.1 to 780.3 mg C/kg and k from 0.024 to 0.069 day -1 , determinately showing fertilizer-induced SOC mineralization. The relationship of C0 (non-linear) and k (linear) with urea-N application rate revealed different responses of C0 and k to increasing rate of fertilizer N. CONCLUSION(s): The relationship of mineralizable SOC pool size and mineralization rate with urea-N application rate suggested that increasing N fertilization may accelerate decomposition of readily decomposable SOC; however, it may not always stimulate decomposition of non-readily decomposable SOC that is protected from microbial

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call