Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic cytokine that exerts its effects by interaction with the GM-CSF receptor (GMR) on the surface of responsive cells. The GM-CSF receptor consists of two subunits: GMRalpha, which binds GM-CSF with low affinity, and GMRbeta, which lacks intrinsic ligand-binding capability but complexes with GMRalpha to form a high-affinity receptor (GMRalpha/beta). We conducted dynamic kinetic analyses of GM-CSF receptors to define the role of GMRbeta in the interaction of ligand and receptor. Our data show that GMRalpha/beta exhibits a higher k(on) than GMRalpha, indicating that GMRbeta facilitates ligand acquisition to the binding pocket. Heterogeneity with regard to GM-CSF dissociation from GMRalpha/beta points to the presence of loose and tight ligand-receptor complexes in high-affinity binding. Although the loose complex has a k(off) similar to GMRalpha, the lower k(off) indicates that GMRbeta inhibits GM-CSF release from the tight receptor complex. The two rates of ligand dissociation may provide for discrete mechanisms of interaction between GM-CSF and its high-affinity receptor. These results show that the beta subunit functions to stabilize ligand binding as well as to facilitate ligand acquisition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call