Abstract

The addition of an adjuvant to a pesticide usually occurs in a mix-tank, before spray application to the crop. Their interaction is potentially crucial to overall efficacy but has received little attention from a physical-chemical perspective. Study was undertaken by laser diffraction, Raman spectroscopy, and small-angle X-ray scattering to resolve these physical processes. It was shown that migration of the pesticide into the adjuvant droplet occurred in all cases studied. The level of transfer was dependent upon adjuvant level, adjuvant solubility, and surfactant level. For suspension pesticides, dissolution of crystallites within the droplet occurred to a degree limited by solubility. The results directly demonstrate the transfer of the pesticide into the adjuvant carrier. This indicates that for emulsion-based pesticides, application to the target is likely as a homogeneously mixed droplet, whereas for suspension pesticides, solubility may limit transfer and dissolution, leading to heterogeneity in the applied particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.