Abstract

Kinetic properties of Ni3MnxAl1 − x alloys have been studied at temperatures of 4.2 to 800 K in magnetic fields up to 12 MA/m. Separate contributions to the electrical resistance have been determined: the residual resistance, phonon component, and magnetic component. The behavior of the kinetic properties typical of the ferromagnets is observed, including the positive temperature coefficient of resistance and features in the form of a bend in the curves of the temperature dependence of resistance at the Curie temperature. It is shown that the parameters of the investigated kinetic properties change substantially upon the isomorphic concentration transition L12 → L12 from the ordinary superstructure of Ni3Mn type to the Ni3Al intermetallic compound. It has been revealed that the concentration dependence of the resistance can be described in terms of the percolation theory in the model of effective medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.