Abstract

Modifications of the kinetic properties of the Escherichia coli (RA11) Na(+) - H(+) antiport system by imposed pH gradients (deltapH, interior alkaline) and membrane potential(delta(psi), interior negative) were studied by looking at the accelerating effects of deltapH and delta on downhill Na(+) efflux from membrane vesicles incubated at different external pHs. First,variations of the Na(+) efflux rate ( VNa) as a function of imposed delta pH appear to be strongly dependent on the external pH value.The individual VN, vs. deltapH relationships observed between pH 5.5 and pH 6.6 are all nonlinear and indicate the existence of a threshold deltapH above which V(Na) increases steeply as the deltapH magnitude increases; threshold deltapH values progressively decrease as the pH is raised from 5.5 to 6.6. In contrast, at or above neutrality, V(Na) acceleration is linearly related to deltapH amplitude. Strikingly, it is shown that the deltapH-dependent variations in the Na(+) efflux rate measured in vesicles incubated at different external pHs can be accounted for by variations of internal pH; the observed relationship suggests that a high internal H(+) concentration inhibits the Na(+) -H(+) antiport activity.This inhibition results from a drastic increase in the apparent K(m), of the Na(+) efflux reaction as the internal H(+) concentration increases. On the other hand, imposed Δ increases the Na(+) efflux rate linearly by a selective modification of the V(max) value of the Na(+) efflux. Together, these data indicate that the internal H(+) concentration controls the Na(+)-H(+) antiport activity and that the chemical and electrical proton gradients affect two different kinetic steps of the Na(+)-H(+) exchange reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.