Abstract

Kinetic characteristics of phosphoenolpyruvate carboxylase (PEPC) from the epiphytic C(3) or C(4): CAM intermediate plant, Peperomia camptotricha, were investigated. Few day versus night differences in V(max),K(m(PEP))), or malate inhibition were observed, even in extracts from water-stressed plants which characteristically perform CAM, regardless of efforts to stabilize day/night forms. The PEPC extracted from plants during the light period remained stable, without much of an increase or decrease in activity for at least 22 hours at 0 to 4 degrees C. Extracts from mature, fully developed leaves had slightly greater PEPC activity than from very young, developing leaves. Generally, however, the kinetic properties of PEPC extracted from mature leaves of plants grown under short day (SD), long day (LD), or 1-week water-stress conditions, as well as from young, developing leaves, were similar. The PEPC inhibitor, l-malate, decreased the V(max) and increased the K(m(PEP)) for all treatments. Under specific conditions, malate did not inhibit PEPC rates in the dark extracts as much as the light. The PEPC activator, glucose-6-phosphate (G-6-P), lowered the K(m(PEP)) for all treatments. At saturating PEP concentrations, PEPC activity was independent of pH in the range of 7.5 to 9.0. At subsaturating PEP concentrations, the pH optimum was 7.8. The rates of PEPC activity were lower in the light period extracts than the dark, at pH 7.1, but day/night PEPC was equally active at pH 7.8. At pH 7.5 and a subsaturating PEP concentration, G-6-P significantly activated PEPC. At pH 8, however, only slight activation by G-6-P was observed. The lower pH of 7.5 combined with l-malate addition, greatly inhibited PEPC, particularly in extracts from young, developing leaves which were completely inhibited at an l-malate concentration of 1 millimolar. However, malate did not further inhibit PEPC activity in mature leaves when assayed at pH 7.1. The fairly constant day/night kinetic and regulatory properties of PEPC from P. camptotricha are unlike those of PEPC from CAM or C(4) species studied, and are consistent with the photosynthetic metabolism of this plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.