Abstract
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe(2+) ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn(2+) and Cd(2+) into pea ( Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063-1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe(2+) in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity (59)Fe(2+) uptake system ( K(m) =54-93 nM). Additionally, radiotracer ((65)Zn, (109)Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx ( K(m) of 4 and 100 microM, for Zn(2+) and Cd(2+), respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe(2+) transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.