Abstract

A brief review is given of the kinetic behavior of impurities and vacancies in solid helium, which Andreev and Lifshitz predicted should be delocalized and converted into unique quasiparticles. Primary attention is devoted to the unusual diffusion processes in solid 3He-4He solutions as they undergo phase separation. Because mechanical stresses develop in the crystal during separation, the diffusive flow is substantially reduced and the effective diffusion coefficient becomes smaller than the coherent quantum diffusion coefficient. During the inverse transition from a separated mixture into the homogeneous state, anomalously rapid mass transfer is observed which can be explained qualitatively in terms of a model in which 3He inclusions are dissolved in three stages. Experimental data on the kinetics of phase separation are compared with a diffusive description of the process that takes into account the difference between diffusion processes outside and inside a nucleus of the new phase. Good agreement is obtained between a theoretical calculation and the experimental data. A homogeneous nucleation model is used to estimate the concentration of nuclei. For the first time, the coefficient of mass diffusion is estimated over the entire range of the concentration of the solutions. The behavior of delocalized vacancies in 4He and 3He solid solutions is studied near the separation temperature. The observed features of the pressure in this kind of system during repeated temperature cycling are explained by the formation of pure 4He vacancy clusters. Although the crystal itself has no strict periodicity owing to the random separation of 3He and 4He atoms at the lattice sites, a periodic structure is realized within a cluster and vacancies become delocalized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call