Abstract

A physical co-sputter deposition process under a relevant working gas pressure condition was used to produce a multi-component thin film with a longitudinally self-organized microstructure. In this paper, Co–Si–O thin films were prepared by radio frequency (RF) magnetron sputtering, and their growth structures were studied by means of SEM, TEM, XRD and XPS. The microstructural changes in the Co–Si–O thin film and their dependence on Ar working gas pressure were investigated; the formation of Co–Si–O thin films, having a regular array of needle-like Co columns aligned perpendicularly to the substrate surfaces, was observed with appropriate Ar working gas pressure, and the diameter of the columns increased with increasing Ar pressure. Mesoporous silica thin films having perpendicular mesopore channels were obtained by chemical etching of the columnar Co parts in the Co–Si–O thin films. Through experimental observations, we propose that the phase separation and resultant microstructures in the thin films are determined by the surface mobility of the two components (Co and silica) on the film surface. A simple model, incorporating a diffusion process in the simultaneous deposition of two components, is presented. The model demonstrates the general trends of a kinetically self-organized microstructure in a two-component thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.