Abstract

The structure of Langmuir plasma waves carrying a finite orbital angular momentum is revised in the paraxial approximation. It is shown that the kinetic effects related to higher-order momenta of the electron distribution function lead to coupling of Laguerre-Gaussian modes and result in a modification of the wave dispersion and damping. The theoretical analysis is compared to the three-dimensional particle-in-cell numerical simulations for a mode with orbital momentum l=2. It is demonstrated that propagation of such a plasma wave is accompanied with generation of quasistatic axial and azimuthal magnetic fields which result from the orbital and longitudinal momenta transported with the wave, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call